首页> 外文OA文献 >Identification of Continuous-Time Dynamical Systems: Neural Network Based Algorithms and Parallel Implementation
【2h】

Identification of Continuous-Time Dynamical Systems: Neural Network Based Algorithms and Parallel Implementation

机译:连续时间动力系统的识别:神经网络   基于算法和并行实现

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Time-delay mappings constructed using neural networks have proven successfulin performing nonlinear system identification; however, because of theirdiscrete nature, their use in bifurcation analysis of continuous-time systemsis limited. This shortcoming can be avoided by embedding the neural networks ina training algorithm that mimics a numerical integrator. Both explicit andimplicit integrators can be used. The former case is based on repeatedevaluations of the network in a feedforward implementation; the latter relieson a recurrent network implementation. Here the algorithms and theirimplementation on parallel machines (SIMD and MIMD architectures) arediscussed.
机译:使用神经网络构造的时延映射已被证明可以成功地执行非线性系统识别。但是,由于它们的离散性,它们在连续时间系统的分叉分析中的使用受到限制。通过将神经网络嵌入模拟数值积分器的训练算法中,可以避免此缺点。显式和隐式积分器均可使用。前一种情况是基于前馈实现中网络的重复评估。后者依赖经常性的网络实施。这里讨论了算法及其在并行机(SIMD和MIMD体系结构)上的实现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号